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ABSTRACT
This paper describes our experiments for the high level fea-
ture extraction task in TRECVid 2008. We submitted the
following six runs:

• A jrs1 1: Baseline, early fusion, tuned SVMs.

• A jrs2 2: Early fusion, SVMs without parameter tun-
ing.

• A jrs3 3: Late fusion, tuned SVMs.

• A jrs4 4: Early fusion, transductive SVM (TSVM)
learning using UniverSVM with unlabeled samples on
the scale of 20% of test set size.

• A jrs5 5: Early fusion, transductive SVM learning us-
ing SVMlight TSVM with unlabeled samples on the
scale of the training set size.

• A jrs6 6: Early fusion, transductive SVM learning us-
ing SVMlight TSVM with unlabeled samples on the
scale of 20% of test set size.

The experiments were designed to study both the perfor-
mance of various content-based features in connection with
classic early and late feature fusion as well as the influ-
ence of SVM parameter tuning and learning from unlabeled
test data with different implementations of transductive sup-
port vector machines (TSVMs). The results show that the
time-consuming parameter tuning improves precision only
marginally. Compared to standard SVMs, TSVMs did not
provide overall improvement and only slight benefits for con-
cepts with a small number of training samples.

1. INTRODUCTION
In TRECVid 2008 our group participated in the BBC

Rushes Summarization[1] and in the High Level Feature Ex-
traction task. This notebook paper describes the submission
to the High Level Feature Extraction task. Similar to our
participation in 2007[6], we submitted a set of 6 runs with
the goal to investigate:

• the suitability of various content-based features for
building a baseline run,

• performance of early fusion as opposed to late feature
fusion,

• the influence of parameter SVM parameter tuning,

Figure 1: Basic system architecture.

• the influence of different transductive learning schemes
and

• time complexity.

Figure 1 shows the basic system architecture. The annota-
tions for the training data were provided by the MCG-ICT-
CAS team[9]. For the implementation of the training and
prediction components we used the SVM software packages
LIBSVM[2] for building inductive SVMs and SVMlight [4]
and UniverSVM[8] for transductive SVMs.

The rest of this paper is organized as follows: Section 2 de-
scribes content-based features in detail, Section 3 the train-
ing and prediction process. Results are presented in Sec-
tion 4, conclusions in 5.

2. CONTENT-BASED FEATURES
The content-based features described here are the basis for

the detection methods for high-level semantic concepts. The
following MPEG-7[7] image features were extracted globally:

Color Layout describes the spatial distribution of colors.
This feature is computed by clustering the image into 8x8
blocks and deriving the average value for each block. After
computation of DCT and encoding, a set of low frequency
DCT components is selected (6 for the Y, 3 for the Cb and
Cr plane).

Dominant Color consists of a small number of represen-
tative colors, the fraction of the image represented by each
color cluster and its variance. We use three dominant colors
extracted by mean shift color clustering[3].

Color Structure captures both, color content and infor-
mation about the spatial arrangement of the colors. Specif-



ically, we compute a 32-bin histogram that counts the num-
ber of times a color is present in an 8x8 windowed neigh-
bourhood, as this window progresses over the image rows
and columns.

EdgeHistogram represents the spatial distribution of five
types of edges, namely four directional edges and one non-
directional edge. We use a global histogram generated di-
rectly from the local edge histograms of 4x4 sub-images.

Gabor Energy is computed by filtering the image with a
bank of orientation and scale sensitive filters and calculat-
ing the mean and standard deviation of the filtered outputs
in the frequency space. We applied a fast recursive gabor
filtering for 4 scales and 6 orientations.

The visual activity feature is computed by temporally
subsampling the video and computing the mean absolute
frame differences (MAFD). The description contains statis-
tics about minimum, maximum, mean and median MAFD
per shot.

For each shot the number of faces is detected on the
temporally subsampled video, by using the face detection
method implemented in OpenCV1. The mode (most fre-
quent value) of the number of detected faces in the frames
is described for each shot.

In contrast to our participation in 2007, we did not use
the camera motion feature because of a lack of computa-
tional power. It has to be noted that this fact influences the
chances of comparability between these submissions, which
is already impaired by the changed definition of high level
features.

2.1 Feature Preprocessing
The used content-based features capture both, global im-

age properties (color and texture) and shot properties (faces,
visual activity). To overcome the limitations of having only
one keyframe representing a shot’s visual content, we ex-
tracted every second I-frame from each shot from the test
set. Some input features were preprocessed before transfer-
ring them to the training or prediction system. Specifically,
the number of faces value was quantized to 0 (no face), 1
(one face), 2 (two faces) and 3 (three faces or more). This
seems valid and necessary considering high level features
related to people, e.g. ’Two People’, ’Driver’, ’Demonstra-
tion Or Protest’ or ’Singing’, where this differentiation may
be significant for the concept detector. As feature for visual
activity the mean MAFD value was adopted. Finally, all
feature vectors were statistically normalized, by converting
into a normal distribution with zero mean and unit variance.

3. TRAINING
Our approach to high level feature extraction is based

on training support vector machines (SVMs) since they had
achieved quite satisfactory performance in concept detection
over the past few years. This type of classifier also obtained
good results for our participation to this task in the last year.
The classification of each high level feature (concept) was re-
garded as a two-class problem, where the positive and neg-
ative examples were extracted from the annotations. Since
there were more negative examples than positive examples
for most of the concepts, the SVM training data was com-
posed of all positive annotations with a comparable number
of randomly selected negative annotations. For better com-

1http://sourceforge.net/projects/opencvlibrary

Figure 2: Labeled samples are marked as +/-, unlabeled test
samples as dots. The dashed line shows the classification from
the inductive SVM using only labeled data. The solid line is the
maximum margin hyperplane of the transductive SVM using all
samples.

parability we assured that the random selection produced
the same annotations across different runs. We adopted the
Gaussian RBF kernel function. In all runs except A jrs2 2
we tuned the SVMs by grid search with cross-validation in
order to select the best choice of the parameters C and γ.
Depending on the setup of our runs, SVMs were built using
a single modality of low-level features (for late feature fu-
sion) or using an input feature vector composed of multiple
features. Finally, we ranked the shots according to the pre-
diction outputs from the two-class SVMs for the runs with
early fusion. The run A jrs3 3 performs late fusion which
required the combination of the output of various base clas-
sifiers, for which we chose the product of probabilities.

3.1 Transductive SVMs
In the high level feature extraction task, labeled training

data is available for development and an equal amount of
unlabeled data is used for testing. Semi-supervised learning
methods can incorporate both labeled and unlabeled data.
In order to compensate for the scarcity of training data in
this task, we apply one of such methods, the Transductive
SVM (TSVM). The key idea, as introduced by Joachims[5]
and illustrated in Figure 2, is to find the labeling of the test
examples that optimizes the decision boundary (i.e. max-
imizing margin) which separates the positive and negative
examples of both the training and the test data. Finding a
solution to the resulting optimization problem is hard, hence
many different approximations exist. Unfortunately, these
implementations often do not scale well when dealing with
a large number of unlabeled examples.

An implementation that is practical for a few thousand
examples in the non-linear case is the widely used SVMlight

TSVM software[4]. In our experiments we use SVMlight and
UniverSVM[8]. UniverSVM is a SVM implementation that
uses the Concave-Convex Procedure (CCCP) to optimize
transductive SVMs. The authors report that optimizing
TSVMs with CCCP improves accuracy and decreases train-
ing time when compared to other heuristic methods. In run
A jrs4 4 we used UniverSVM for learning classifiers from
both the labeled data (the same as in run A jrs1 1) and
random 20% of the unlabeled test data. The TSVM from
SVMlight has been applied in a similar fashion in run A jrs6 6.
In order to see the influence of changing the number of unla-
beled data, this number was put on a level with the number
of labeled training samples in run A jrs5 5 .



4. RESULTS AND DISCUSSION
The results are shown in Table 1. The first observation

is that the overall performance is worse than in 2007. This
may be due to a more complicated selection of concepts on
the one hand and the missing camera motion feature on the
other hand. The baseline run was our best performing run
with a mean inferred average precision of 0.039, closely fol-
lowed by runs using transductive SVMs and untuned SVMs.

The performance of the untuned SVMs in run jrs 2 2 is
slightly down as compared to the SVMs subject to param-
eter tuning. Parameter tuning using grid search and cross
validation aims at improving generalization and thus is gen-
erally beneficial. Interestingly, the detection of the ’Dog’
concept was significantly impaired by the tuning. The rea-
son is that the majority of training and test data for this
concept consists of shots that show exactly the same scene
(dog walking on beach, e.g. shot38 2). Only in this case it
is preferable to have a less generalized classifier that mem-
orizes the specific appearance of the training data instead
of learning a general pattern from it. Early fusion outper-
formed late fusion significantly, which is partly contradictory
to our observation in the last year where early fusion went
only slightly ahead.

Those features where our system achieved good results
generally correlate with a good overall TRECVid median
and large number of positive training samples; the opposite
holds true for bad scores. The imbalanced training sets, i.e.
only between 0.1% and 8% positives samples, also raise a
problem for transductive SVMs. A common drawback of
these methods is that they require the ratio between posi-
tive and negative examples in the test data to be close to
the ratio in the training data. For example, SVMlight imple-
ments a balancing constraint to make sure that the average
prediction of unlabeled points from the test set equals the
average label of labeled points from the training set. This
requirement does not hold in this task, particularly when
the training dataset is small. In our setup the initial SVMs
were trained with an equal number of positive and nega-
tive samples based on previous empirical experiments with
unbalanced datasets. This explains why the TSVMs in gen-
eral did not outperform the traditional classifiers which were
only trained on labeled data. It also advocates the need for
techniques improving the training of TSVMs in the presence
of imbalanced datasets.

A comparison of the runs using transduction indicates
that the SVMlight implementations performed better than
UniverSVM. Furthermore it is beneficial to use a larger num-
ber of unlabeled samples (run jrs 6 6) which results in an
improved classification of some concepts with very small
number of training samples. However, TSVMs are gener-
ally limited by the quality of the initial classifier trained on
the labeled source.

4.1 Run-time Complexity
A summary of the computational complexity for SVM

training, parameter selection and prediction and can be found
in Table 2. The times were measured on a workstation with
an Intel Core 2 CPU (2.1GHz) and 2GB RAM. Generally,
the computational time for training and for parameter tun-
ing using grid search with n-fold cross validation increased
with the number of training samples. Similarly, the training
needs more time when incorporating more unlabeled data
(A jrs4 4 to A jrs6 6). For the concept ’Two people’ which

is trained on about 3000 samples, the tuning process took 2
hours. The difference between the run-time performance of
early and late fusion is insignificant.

Naturally, the training time for transductive SVMs is con-
siderably longer than the one needed for building inductive
SVMs. This also holds true for the prediction time. The
run A jrs4 4 using transduction with UniverSVM shows a
shorter average training and prediction time as compared to
A jrs6 6 which uses the same input but SVMlight .

5. CONCLUSIONS
We have presented experiments on high level feature ex-

traction using a series of SVM classifiers based on a variety of
low-level features combining global image information, face
detection and visual activity. We assume that our baseline
outperforms the other runs due to the effective grounding of
a variety of low-level visual features and the generalization
capability of the SVM framework with high-dimensional fea-
ture spaces.

Transduction was applied for incorporating unlabeled data
in the training process, early and late fusion methods were
used for prediction. The usage of TSVMs was not profitable
because of issues with training on imbalanced datasets.
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Feature #pos.
train

#hits
test

median A jrs1 1 A jrs2 2 A jrs3 3 A jrs4 4 A jrs5 5 A jrs6 6

001 Classroom 186 64 0.008 0.003 0.003 0.001 0.004 0.000 0.000
002 Bridge 153 30 0.004 0.011 0.027 0.000 0.010 0.009 0.011
003 Emergency Veh. 125 22 0.003 0.002 0.001 0.009 0.001 0.003 0.007
004 Dog 99 94 0.101 0.022 0.085 0.004 0.007 0.023 0.006
005 Kitchen 228 124 0.010 0.004 0.005 0.005 0.006 0.002 0.001
006 Airplane flying 53 64 0.029 0.068 0.042 0.005 0.018 0.040 0.097
007 Two People 3216 1090 0.050 0.019 0.035 0.016 0.028 0.005 0.024
008 Bus 82 47 0.004 0.002 0.002 0.000 0.001 0.003 0.003
009 Driver 109 364 0.046 0.053 0.035 0.021 0.031 0.033 0.037
010 Cityscape 936 337 0.059 0.078 0.073 0.042 0.057 0.060 0.063
011 Harbor 153 35 0.008 0.004 0.007 0.008 0.005 0.004 0.003
012 Telephone 112 106 0.011 0.005 0.005 0.001 0.002 0.011 0.005
013 Street 1479 458 0.113 0.085 0.076 0.031 0.087 0.060 0.070
014 Demo Or Prot. 55 87 0.013 0.006 0.003 0.006 0.001 0.007 0.006
015 Hand 1098 630 0.095 0.113 0.071 0.067 0.084 0.102 0.099
016 Mountain 140 140 0.041 0.035 0.032 0.012 0.018 0.027 0.032
017 Nighttime 336 316 0.102 0.108 0.082 0.079 0.047 0.090 0.102
018 Boat Ship 372 210 0.093 0.099 0.111 0.090 0.084 0.093 0.092
019 Flower 649 319 0.058 0.063 0.062 0.057 0.002 0.055 0.068
020 Singing 310 133 0.014 0.007 0.007 0.002 0.003 0.007 0.011
mean IAP 0.043 0.039 0.038 0.023 0.025 0.031 0.037

Table 1: High Level Feature Extraction Results. The 20 evaluated features are shown with the number of positive training samples in
the training set and number of unique hits in the test set. The TRECVid median and the inferred average precision measures of all our
runs are stated.

Training Tuning Prediction
A jrs1 1 10sec - 2min 2.5min - 2h 30sec - 2min
A jrs2 2 10sec - 2min - 30sec - 2min
A jrs3 3 15sec - 2min 2min - 2h 20sec - 5min
A jrs4 4 7min - 20min 2.5min - 2h 30sec - 20min
A jrs5 5 20sec - 3min 2.5min - 2h 20sec - 5min
A jrs6 6 3min - 1h 2.5min - 2h 3min - 1h

Table 2: Computational complexity for each submitted run. The minimum and maximum needed time is given for training (SVM model
creation), prediction on the 2008 test data and parameter tuning per high level feature. The minimum time generally applies to the high
level features that come with the fewest training samples, as opposed to the maximum training time which is valid for the more frequent
concepts, e.g. Two people, Street and Hand.


